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Introduction & Motivation Introduction

Semantic Web and Ontologies

Semantic Web (SW) goal: making data on the Web machine understandable
[Berners-Lee et al., 2001]

ontologies play a key role acting as a shared vocabulary for assigning data
semantics

Examples of existing real ontologies

Schema.org

Gene Ontology

Foundational Model of Anatomy ontology

Financial Industry Business Ontology (by OMG Finance Domain Task Force)

GoodRelations

. . .
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Introduction & Motivation Introduction

OWL standard language ⇒ Description Logics (DLs) theoretical foundation

Ontologies equipped with deductive reasoning capabilities ⇒ allowing to make
explicit, knowledge that is implicit within them

Deduction:
”Crédit du Nord”,
”Crédit Agricole”
are also Company
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Introduction & Motivation Introduction

The Web of Data

Progressive increasing amount of annotated and interlinked data on
the Web

Web of Data global scale interlinking ontologies and data [Shadbolt

et al., 2006]

Linked Data: rules for making easier and easier publishing, linking
and sharing data on the Web [Berners-Lee, 2006]

Linked Open Data1 public openness and availability of larger and
larger datasets ⇒ relevance and centrality of DBpedia2 as a driving
force

1
https://lod-cloud.net/versions/latest/lod-cloud.svg

2
http://dbpedia.org
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Introduction & Motivation Introduction

3

Open KG
online with content freely accessible

BabelNet

DBpedia

Freebase

Wikidata

YAGO

....

Enterprise KG
for commercial usage

Google

Amazon

Facebook

LinkedIn

Microsoft

....

3
picture from https://www.csee.umbc.edu/courses/graduate/691/fall19/07/
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Introduction & Motivation Introduction

Applications

e-Commerce

Semantic Search

Fact Checking

Personalization

Recommendation

Medical decision support
system

Question Answering

Machine Translation

...

Research Areas

Information Extraction

Natural Language Processing

Machine Learnig (ML)

Knowledge Representation

Web

Robotics

...
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Introduction & Motivation Introduction

Knowledge Graph: Definition [Hogan et al., 2021]

A graph of data intended to convey knowledge of the real world

conforming to a graph-based data model

nodes represent entities of interest

edges represent potentially different relations between these entities

data graph potentially enhanced with schema

KGs: Main Features

ontologies employed to define and reason about the semantics of
nodes and edges

RDF, RDFS, OWL representation languages will be assumed

grounded on the Open World Assumption (OWA)

very large data collections
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Introduction & Motivation Introduction

Knowledge Graph: Example
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Issues



Introduction & Motivation Motivation

KG suffer of incompleteness and noise

e.g. missing links, wrong links
since often result from a complex building process

Ontologies and assertions can be out-of-sync

resulting incomplete, noisy and sometimes inconsistent wrt the actual
usage of the conceptual vocabulary in the assertions

Reasoning cannot be performed or may return counterintuitive results
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Introduction & Motivation Motivation

Question: would it be possible to discover new/additional knowledge by
exploiting the evidence coming from the assertional data?

Deduction:
”Crédit du Nord”,
”Crédit Agricole”
are also Company

Incompleteness

UniCredit is a Bank
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Introduction & Motivation Motivation

Deduction:
”Crédit du Nord”,
”Crédit Agricole”
are also Company

Inconsistency

Mellon cannot be
a Person and
a Bank
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Introduction & Motivation Motivation

Deduction:
”Crédit du Nord”,
”Crédit Agricole”
are also Company

Noise

Person ≡ ¬Bank
missing
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Introduction & Motivation Motivation

Machine Learning methods adopted to discover new/additional knowledge
by exploiting the evidence coming from the data [d’Amato et al., 2010; d’Amato,

2020]

Machine Learning: the study of systems that improve their behavior over
time with experience [Mitchell, 1997; MacKay, 2002; Flach, 2012; Murphy, 2012]

experience:

interactions with the world
set of observations or examples
internal states and processes

ML Approaches: [Luger, 2005]

symbol-based
numeric / connectionist / neurally inspired
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Basics

Symbol-Based Learning

uses symbols for representing entities and relationships of a domain
(observations/examples)

infer novel, valid and useful generalizations of examples

that provide new insights into the data/examples
are ideally readily interpretable by the user

by searching thought possible generalizations expressed with symbols

Induction typically adopted
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Basics

Neurally Inspired Learning

represents knowledge as patterns of activity in networks of small,
individual processing units

needs to encode knowledge into numerical quantities in the network

learns by modifying / adapting the network structure and weights in
response to incoming (training) data

does not learn by adding representation to the KB
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Basics

Induction vs. Deduction

Deduction (Truth preserving)

Given:

a set of general axioms

a proof procedure

Draw:

correct and certain
conclusions

Induction (Falsity preserving)

Given:

a set of examples

Determine:

a possible/plausible
generalization covering

the given
examples/observations
new and not previously
observed examples
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Basics

Supervised Learning (Learning from examples)

Given a training set {(x1, y1), . . . (xn, yn)} where xi are input
examples and yi the desired output, learn an unknown function f such
that f (x) = y for new examples

y having discrete values ⇒ Classification Problem

y having continuos values ⇒ Regression Problem

y having a probability value ⇒ Probability Estimation Problem

Supervised Concept Learning:

Given a training set of positive and negative examples for a concept,

construct a description that will accurately classify whether future
examples are positive or negative.
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Basics

Unsupervised Learning (Learning from Observations)

Given a set of observations {x1, . . . xn}
discover hidden patterns in the data ⇒ Discovery
for a concept/class/category, construct a description that is able to
determine if a (new) example is an instance of the concept (positive
example) or not (called negative example). ⇒ Concept Learning
assess groups of similar data items ⇒ Clustering

Semi-supervised learning

is halfway between supervised and unsupervised learning

training data is built up by both few labeled (i.e. with the desired
output) and unlabeled data

both kinds of data are used for solving the learning tasks (almost the
same tasks as for the case of supervised learning)
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Basics

Symbol-based methods

able to exploit background
knowledge and (deductive)
reasoning capabilities

limited in scalability

⇓
Ontology Mining

All activities that allow for
discovering hidden knowledge
from ontological KBs

Numeric-based methods

highly scalable

schema level information and
reasoning capabilities almost
disregarded

⇓
Knowledge Graph Refinement

Link Prediction: predicts
missing links between entities

Triple Classification: assesses
statement correctness in a KG

[d’Amato, 2020]
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Ontology Mining Tasks

Instance Retrieval (Instance Level)

Ontology Enrichment (Schema Level)

from an inductive perspective



Ontology Mining Tasks

Instance Retrieval (Instance Level)

Ontology Enrichment (Schema Level)
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Instance Retrieval as

a Classification Problem



Symbol-based methods for Ontology Mining Instance Retrieval as a Classification Problem

Introducing Instance Retrieval I

Instance Retrieval → Finding the extension of a query concept

Instance Retrieval (Bank) = {”Crédit du Nord”, ”Crédit Agricole”}
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Symbol-based methods for Ontology Mining Instance Retrieval as a Classification Problem

Introducing Instance Retrieval I

Problem: Instance Retrieval in incomplete/inconsistent/noisy ontologies
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Symbol-based methods for Ontology Mining Instance Retrieval as a Classification Problem

Introducing Instance Retrieval II

Problem: Instance Retrieval in incomplete/inconsistent/noisy ontologies
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Symbol-based methods for Ontology Mining Instance Retrieval as a Classification Problem

Introducing Instance Retrieval III

Problem: Instance Retrieval in incomplete/inconsistent/noisy ontologies
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Symbol-based methods for Ontology Mining Instance Retrieval as a Classification Problem

Idea

Casting the problem as a classification problem

assess the class membership of individuals in a DL KB w.r.t. the query
concept

Similarity-based methods mostly adopted ⇒ efficient and noise tolerant

Issues: State of art classification methods cannot be straightforwardly
applied

generally applied to feature vector representation
→ upgrade DL expressive representations

implicit Closed World Assumption made in ML
→ cope with the Open World Assumption made in DLs

classes considered as disjoint
→ cannot assume disjointness of all concepts
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Symbol-based methods for Ontology Mining Instance Retrieval as a Classification Problem

Adopted Solutions:

Defined new semantic similarity measures for
DL representations [d’Amato, 2007]

to cope with the high expressive power of DLs
to deal with the semantics of the compared objects (concepts,
individuals, ontologies)
to convey the underlying semantics of KB

Formalized a set of criteria that a similarity function has to satisfy for
being defined semantic [d’Amato et al., 2008a]

Definition of the classification problem taking into account OWA

Multi-class classification problem decomposed into a set a smaller
classification problems
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Symbol-based methods for Ontology Mining Instance Retrieval as a Classification Problem

Definition (Problem Definition)

Given:

a populated ontological knowledge base KB = (T ,A)

a query concept Q

a training set with {+1,−1, 0} as target values

Learn a classification function f such that: ∀a ∈ Ind(A) :

f (a) = +1 if a is instance of Q

f (a) = −1 if a is instance of ¬Q
f (a) = 0 otherwise (unknown classification because of OWA)

Dual Problem

given an individual a ∈ Ind(A), tell concepts C1, . . . ,Ck in KB it belongs to

the multi-class classification problem is decomposed into a set of ternary
classification problems (one per target concept)
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Symbol-based methods for Ontology Mining Instance Retrieval as a Classification Problem

Developed methods

Pioneering the Problem

relational K-NN for DL KBs [d’Amato et al., 2008b]

Improving the efficiency

kernel functions for kernel methods to be applied to DLs KBs [Fanizzi and

d’Amato, 2006; Fanizzi et al., 2012a; Bloehdorn and Sure, 2007]

Scaling on large datasets

Statistical Relational Learning methods for large scale and data
sparseness [Huang et al., 2010; Minervini et al., 2015]
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Symbol-based methods for Ontology Mining Instance Retrieval as a Classification Problem

Example: Nearest Neighbor Classification

query concept: Bank k = 7
target values standing for the class values: {+1, 0,−1}

xq

+1

+1

+1

+1

+1

−1

−1
+1

−1
+1

0

0

0

0

0

query individual

class(xq)← ?
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Symbol-based methods for Ontology Mining Instance Retrieval as a Classification Problem

Example: Nearest Neighbor Classification

query concept: Bank k = 7
target values standing for the class values: {+1, 0,−1}

xq

+1

+1

+1

+1

+1

−1

−1
+1

−1
+1

0

0

0

0

0

query individual

class(xq)← +1
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Symbol-based methods for Ontology Mining Instance Retrieval as a Classification Problem

Example: Kernel Method Classification

+

+
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+
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−
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Symbol-based methods for Ontology Mining Instance Retrieval as a Classification Problem

On evaluating the Classifier

Problem: How evaluating classification results?

Inductive Classification compared with a standard reasoner (Pellet)

Query concepts from ontologies publicly available considered

Registered mismatches: Induction: {+1,−1} - Deduction: no results

Evaluated as mistake if precision and recall were used while it could
turn out to be a correct inference when judged by a human

Defined new metrics to distinguish induced assertions from mistakes

Reasoner
+1 0 -1

Inductive +1 M I C
Classifier 0 O M O

-1 C I M

M Match Rate O Ommission Error Rate
C Commission Error Rate I Induction Rate
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Symbol-based methods for Ontology Mining Instance Retrieval as a Classification Problem

Lesson Learnt from experiments

Commission error almost zero on average

Omission error rate very low and only in some cases

Not null for ontologies in which disjoint axioms are missing

Induction Rate not zero

new knowledge (not logically derivable) induced ⇒ can be used for
semi-automatizing the ontology population task
induced knowledge ⇒ individuals are instances of many concepts and
homogeneously spread w.r.t. the several concepts.

match commission omission induction
SWM 97.5 ± 3.2 0.0 ± 0.0 2.2 ± 3.1 0.3 ± 1.2

LUBM 99.5 ± 0.7 0.0 ± 0.0 0.5 ± 0.7 0.0 ± 0.0
NTN 97.5 ± 1.9 0.6 ± 0.7 1.3 ± 1.4 0.6 ± 1.7

Financial 99.7 ± 0.2 0.0 ± 0.0 0.0 ± 0.0 0.2 ± 0.2
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Symbol-based methods for Ontology Mining Instance Retrieval as a Classification Problem

Research Directions to Investigate Further

Multi-Label Classification

individuals can be instance of more than one concept at the same
time [Melo and Paulheim, 2019; Peixoto et al., 2016]

Hierarchical Classification

Particularly appropriate for type prediction [Melo et al., 2016, 2017]

Ensemble methods

only boosting has been preliminarily applied [Rizzo et al., 2015a; Fanizzi

et al., 2019]

Regression

to be exploited for predicting missing values of datatypes
properties [Fanizzi et al., 2012b; Rizzo et al., 2016]
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Ontology Mining Tasks

Instance Retrieval (Instance Level)

Ontology Enrichment (Schema Level)

from an inductive perspective



Ontology enrichment as

a Concept Learning Problem



Symbol-based methods for Ontology Mining Ontology Enrichment as a Concept Learning Problem

On Learning Concept Descriptions I

Goal: Learning descriptions for a given concept name / expression

Example : Man ≡ Human ⊓Male

Question: How to learn concept descriptions automatically, given a set of
individuals?

Idea

Regarding the problem as a supervised concept learning task

Supervised Concept Learning:

Given a training set of positive and negative examples for a concept,

construct a description that will accurately classify whether future examples
are positive or negative.
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Symbol-based methods for Ontology Mining Ontology Enrichment as a Concept Learning Problem

On Learning Concept Descriptions II

Definition (Problem Definition)

Given

the KB K as a background knowledge
a subset pos of individuals as positive examples of C
a subset neg of individuals as negative examples of C

Learn

a DL concept description D so that
the individuals in pos are instances of D while those in neg are not
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Learning as Search



Symbol-based methods for Ontology Mining Ontology Enrichment as a Concept Learning Problem

How Does Relational Learning Work?

Symbolic ML techniques essentially search a space of possible hypothesis
Lh (e.g. patterns, models, regularities) [De Raedt, 2008]

Depending on the task, different search algorithms and principles
apply

complete search strategy applicable
heuristic search method (e.g. hill climbing)

easy way: generate-and-test algorithm

näıve and inefficient
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Symbol-based methods for Ontology Mining Ontology Enrichment as a Concept Learning Problem

A Generate-and-Test Algorithm

A (trivial) algorithm based on a generate-and-test technique is the
enumeration algorithm

for each possible hypothesis h checks if h satisfies a given quality
criterion Q wrt the data D

for each h ∈ Lh do

if Q(h,D) = true then

output h
end if

end for

Properties

whenever a solution exists, the enumeration algorithm will find it

it can only be applied if the hypotheses language Lh is enumerable
the algorithm searches the whole space → inefficient

it is advantageous to structure the search space, according to generality
allowing for its pruning
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Symbol-based methods for Ontology Mining Ontology Enrichment as a Concept Learning Problem

Usually logical entailment used as for generality relation

a more general hypothesis logically entails the more specific one

a more specific hypothesis is a logical consequence of the more
general one

Definition (generality)

Let h1, h2 ∈ Lh. Hypothesis h1 is more general than (or
equivalent) hypothesis h2 , h1 ⪯ h2, iff all examples covered
by h2 are also covered by h1, i.e., c(h2) ⊆ c(h1)

We also say that

h2 is a specialization of h1
h1 is a generalization of h2

h1 is a proper generalization of h2, h1 ≺ h2
when h1 ⪯ h2
and h1 covers examples not covered by h2
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Symbol-based methods for Ontology Mining Ontology Enrichment as a Concept Learning Problem

Space traversed in:

a general-to-specific strategy:

the algorithm starts from the
most general hypothesis

then repeatedly specializes
mapping hypothesis
/patterns onto a set of
specializations

a specific-to-general strategy

Notice that the ⪯ is transitive and reflexive; → it is a quasi-order

not anti-symmetric since there may exist several hypotheses that
cover exactly the same set of examples: syntactic variants

undesirable: they introduce redundancies in the search space
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Symbol-based methods for Ontology Mining Ontology Enrichment as a Concept Learning Problem

Monotonicity I

The generality relation imposes a useful structure on the search space
provided that the quality criterion involves some properties:

Definition (monotonicity of the criteria)

A quality criterion Q is monotonic iff

∀s, g ∈ Lh,∀D ⊆ Le : (g ⪯ s) ∧ Q(g ,D)→ Q(s,D)

It is anti-monotonic iff

∀s, g ∈ Lh,∀D ⊆ Le : (g ⪯ s) ∧ Q(s,D)→ Q(g ,D)
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Symbol-based methods for Ontology Mining Ontology Enrichment as a Concept Learning Problem

Monotonicity II

Properties that directly follow from the definitions of monotonicity and
anti-monotonicity:

Property (prune generalizations)

If a hypothesis h does not satisfy a monotonic quality
criterion then none of its generalizations will

Property (prune specializations)

If a hypothesis h does not satisfy an anti-monotonic
quality criterion then none of its specializations will
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Symbol-based methods for Ontology Mining Ontology Enrichment as a Concept Learning Problem

Monotonicity III

prune specializations prune generalizations
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Symbol-based methods for Ontology Mining Ontology Enrichment as a Concept Learning Problem

Refinement Operators I

How can be the search space Lh traversed?

Many ML algorithms are based on refinement operators

generating sets of specializations (or generalizations) of given
hypotheses

Definition

A generalization operator ρg : Lh → 2Lh is a function such that

∀h ∈ Lh : ρg (h) ⊆ {h′ ∈ Lh | h′ ⪯ h}

Dually, a specialization operator ρs : Lh → 2Lh is a function such that

∀h ∈ Lh : ρs(h) ⊆ {h′ ∈ Lh | h ⪯ h′}
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Symbol-based methods for Ontology Mining Ontology Enrichment as a Concept Learning Problem

Refinement Operators II

Properties
defined for specialization op’s (corresponding definitions for generalization op’s easily
obtained)

ρ is an ideal operator for Lh iff
∀h ∈ Lh : ρ(h) = min({h′ ∈ Lh | h ≺ h′})

it returns all children for a node in the Hasse diagram
proper refinements, not a syntactic variant of the original hypothesis

often are used in heuristic search algorithms

ρ is an optimal operator for Lh iff for all h ∈ Lh there exists exactly
one sequence of hypotheses ⊤ = h0, h1, . . . , hn = h ∈ Lh such
that hi ∈ ρ(hi−1) for all i

used in complete search algorithms

An operator for which there exists at least one sequence from ⊤ to
any h ∈ Lh is called complete

An operator for which there exists at most one such sequence is
non-redundant
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Symbol-based methods for Ontology Mining Ontology Enrichment as a Concept Learning Problem

A Generic Learning Algorithm I

Adapting the enumeration algorithm to employ the refinement operators:

Queue ← Init
Th← ∅
while not Stop do

Delete h from Queue
if Q(h,D) then

Th← Th ∪ {h}
Queue ← Queue ∪ ρ(h)

end if

Queue ← Prune(Queue)
end while

return Th
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Symbol-based methods for Ontology Mining Ontology Enrichment as a Concept Learning Problem

A Generic Learning Algorithm II

Observations. many parameters determining the behavior

Init determines the starting point of the search algorithm

The initialization may yield one or more initial hypotheses
Most algorithms start either at ⊤ and only specialize (the so-called
general-to-specific systems), or at ⊥ and only generalize (the
specific-to-general systems)

Delete determines the search strategy

first-in-first-out: breadth-first search
last-in-first-out: depth-first search
best hypothesis (according to some criterion or heuristic): best-first
algorithm

ρ determines the size and nature of the refinement steps through the
search space

Stop determines when the algorithm halts
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Symbol-based methods for Ontology Mining Ontology Enrichment as a Concept Learning Problem

A Generic Learning Algorithm III

Some algorthms compute all elements, k elements or an
approximation of an element satisfying Q

if all elements are desired, Stop equals Queue = ∅
when k elements are sought, it is |Th| = k

Some algorithms Prune candidate hypotheses from Queue

heuristic pruning prunes away parts of the search space that appear to
be uninteresting
sound pruning prunes away parts of the search space that cannot
contain solutions

As with other search algorithms in AI:

complete algorithms compute all elements of Th(Q,D,Lh)
heuristic algorithms aim at computing one or a few hypotheses that
score best w.r.t. a given heuristic

not guaranteeing that the best hypotheses are found
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Symbol-based methods for Ontology Mining Ontology Enrichment as a Concept Learning Problem

DL Concept Learning – Problem Definition I

given a KB K = ⟨T ,A⟩
a target concept C
a set of training instances partitioned as examples and
counterexamples E = E+ ∪ E− for C

find a description D for C generalizing E, C ≡ D,
that maximizes the accuracy w.r.t. the positive and negative
examples

Possible Issues:

Negative examples: ML grounded on CWA, DLs based on OWA

Learning from positive examples only if negative examples missing

Suitable refinement operators needed

Evaluating results: metrics, unbalanced setting

C. d’Amato (UniBa) SW with ML: issues to be considered Reasoning Web 2021 59 / 112



Symbol-based methods for Ontology Mining Ontology Enrichment as a Concept Learning Problem

DL Concept Learning – Problem Definition II

Accuracy

D correctly entails at least (1− ϵ)|E| of the assertions on examples
regarding their membership to C :
∀e ∈ E+ : K ⊔ {D} |= C (e) and
∀e ∈ E− : K ⊔ {D} ̸|= C (e)

stronger alternative:
∀e ∈ E− : K ⊔ {D} |= ¬C (e)

Variant: separate ϵ+ and ϵ−
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Symbol-based methods for Ontology Mining Ontology Enrichment as a Concept Learning Problem

Refinement Operators

Randomized recursive refinement operator ρ
C ′ ∈ ρ(C )

1 C ′ = C ⊓ A

2 C ′ = C ⊓ ¬A
3 C ′ = C ⊓ ∀R.⊤
4 C ′ = C ⊓ ∃R.⊤
5 C ′ = C1 ⊓ · · · ⊓ B ⊓ · · · ⊓ Cn

if C = C1 ⊓ · · · ⊓ A ⊓ · · · ⊓ Cn and B ⊑ A

6 C ′ = C1 ⊓ · · · ⊓ ¬B ⊓ · · · ⊓ Cn

if C = C1 ⊓ · · · ⊓ ¬A ⊓ · · · ⊓ Cn and A ⊒ B

7 C ′ = C1 ⊓ · · · ⊓ ∃R.D ⊓ · · · ⊓ Cn

if C = C1 ⊓ · · · ⊓ ∃R.E ⊓ · · · ⊓ Cn and D ∈ ρ(E )

8 C ′ = C1 ⊓ · · · ⊓ ∀R.D ⊓ · · · ⊓ Cn

if C = C1 ⊓ · · · ⊓ ∀R.E ⊓ · · · ⊓ Cn and D ∈ ρ(E )

C. d’Amato (UniBa) SW with ML: issues to be considered Reasoning Web 2021 61 / 112



Symbol-based methods for Ontology Mining Ontology Enrichment as a Concept Learning Problem

Developed Methods for Supervised Concept Learning

Separate-and-conquer approach
YinYang [Iannone et al., 2007]

DL-FOIL [Fanizzi et al., 2008, 2018]

DL-Learner [Lehmann and Hitzler, 2010]

Celoe [Lehmann et al., 2011]

DL-FOCL [Rizzo et al., 2020]

Divide-and-conquer approach
TermiTIS [Fanizzi et al., 2010]

Parcel [Tran et al., 2012]

SPaCEL [Tran et al., 2017]

TermiTIS – Extensions
Pruning Methods [Rizzo et al., 2017b,a] - simplify complexity & avoid
overfitting
Terminological Random Forests TRFs [Rizzo et al., 2015a] - tackling also
the class-imbalance problem
Evidential TDTs and TRFs [Rizzo et al., 2018, 2015b] - based on the
Dempster-Shafer Theory(DST): a general framework for reasoning with
uncertainty
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Symbol-based methods for Ontology Mining Ontology Enrichment as a Concept Learning Problem

DL-FOIL I

Problem: simple generate-and-test algorithms may be inefficient

DL-FOIL adopt a heuristic sequential covering algorithm [Fanizzi et al., 2008;

Fanizzi, 2011]

general-to-specific search

starting from ⊤
repeat (cover as many positives as possible)

if non positives are covered
repeat

find heuristically the best refinement
(not to cover them yet still covering as many positives as possible)
add refinement as a disjunct partial def.

until only positives covered

until all positives covered
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Symbol-based methods for Ontology Mining Ontology Enrichment as a Concept Learning Problem

DL-FOIL II

C1

C′
1

+

−

+

−

−

+

+
+

−

−

+

−

+

−

−

C2

C′
2

+

−

+

−

−

+

+

+

−

−

−

+

−

C1 = MasterStudent C ′
1 = MasterStudent ⊓ ∃worskIn.⊤

C2 = BachelorStudent C ′
2 = BachelorStudent ⊓ ∃worskIn.⊤
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Symbol-based methods for Ontology Mining Ontology Enrichment as a Concept Learning Problem

DL-FOIL III

Heuristic function: Gain

g(D0,D1) = p1 ·
[
log

p1
p1 + n1 + u1

− log
p0

p0 + n0 + u0

]
where

p1|n1|u1 number of exs covered by the specialized def. D1

p0|n0|u0 number of exs covered by the former (partial) def. D0

+ correction via Laplace smoothing
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Symbol-based methods for Ontology Mining Ontology Enrichment as a Concept Learning Problem

On Evaluating the Learnt Concept Descriptions

Publicly available ontologies considered

A number (30) of satisfiable randomly generated concepts considered

Positive and negative examples collected for each concept by using a
deductive reasoner

Running concept learning on the collected positive and negative
examples

Inductive classification performed on the learnt concept descriptions
match commission omission induction

ontology rate error rate error rate rate
BioPax 76.9 ± 15.7 19.7 ± 15.9 7.0 ± 20.0 7.5 ± 23.7

NTN 78.0 ± 19.2 16.1 ± 4.0 6.4 ± 8.1 14.0 ± 10.1
Financial 75.5 ± 20.8 16.1 ± 12.8 4.5 ± 5.1 3.7 ± 7.9
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Symbol-based methods for Ontology Mining Ontology Enrichment as a Concept Learning Problem

Examples of Learned Descriptions with DL-FOIL

BioPax
induced:
Or( And( physicalEntity protein) dataSource)

original:
Or( And( And( dataSource externalReferenceUtilityClass)

ForAll(ORGANISM ForAll(CONTROLLED phys icalInteraction)))

protein)

NTN
induced:
Or( EvilSupernaturalBeing Not(God))

original:
Not(God)

Financial
induced:
Or( Not(Finished) NotPaidFinishedLoan Weekly)

original:
Or( LoanPayment Not(NoProblemsFinishedLoan))
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Symbol-based methods for Ontology Mining Ontology Enrichment as a Concept Learning Problem

Lesson Learnt from Experiments

Relatively small ontological KBs adopted ⇒ scalability needs to be
improved

Suitable concept descriptions learned ⇒ validation by expert
recommended for adding axioms to the KB

approximated descriptions may be learned depending of the threshold
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Symbol-based methods for Ontology Mining Learning Disjointness Axioms

A fine grained schema level information can bring better insight of the data

Disjointness axioms often missing

Problems:

introduction of noise

K ={JournalPaper ⊑ Paper , ConferencePaper ⊑ Paper , ConferencePaper(a),Author(a) }
K is Consistent !!!
Cause Axiom: Author ≡ ¬ConferencePaper missing

counterintuitive inferences

K ={JournalPaper ⊑ Paper , ConferencePaper ⊑ Paper , ConferencePaper(a) }

K |= JournalPaper(a)?
Answer: Unknown
Cause Axiom: JournalPaper ≡ ¬ConferencePaper missing

hard collecting negative examples when adopting numeric approaches
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Symbol-based methods for Ontology Mining Learning Disjointness Axioms

Observation: extensions of disjoint concepts do not overlap

Question: would it be possible to automatically capture disjointness
axioms by analyzing the data configuration/distribution?

Idea: Exploiting (Conceptual) clustering methods for the purpose

Definition (Problem Definition)

Given

an ontological knowledge base K = ⟨T ,A⟩
a set of individuals (aka entities) I ⊆ Ind(A)(A)

Find

n pairwise disjoint clusters {C1, . . . ,Cn}
for each i = 1, . . . , n, a concept description Di that describes
Ci , such that:

∀a ∈ Ci : K |= Di (a)
∀b ∈ Cj , j ̸= i : K |= ¬Di (b).

Hence ∀Di ,Dj , i ̸= j : K |= Dj ⊑ ¬Di .
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Symbol-based methods for Ontology Mining Learning Disjointness Axioms

Clustering Methods

Unsupervised inductive learning methods that organize a collection of
unlabeled resources into meaningful clusters such that

intra-cluster similarity is high

inter-cluster similarity is low
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Symbol-based methods for Ontology Mining Learning Disjointness Axioms

Clustering Methods

Unsupervised inductive learning methods that organize a collection of
unlabeled resources into meaningful clusters such that

intra-cluster similarity is high
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Symbol-based methods for Ontology Mining Learning Disjointness Axioms

Observation: extensions of disjoint concepts do not overlap

Question: would it be possible to automatically capture them by
analyzing the data configuration/distribution?

Idea: Exploiting (Conceptual) clustering methods for the purpose

Definition (Problem Definition)

Given

a knowledge base K = ⟨T ,A⟩
a set of individuals (aka entities) I ⊆ Ind(A)(A)

Find

n pairwise disjoint clusters {C1, . . . ,Cn}
for each i = 1, . . . , n, a concept description Di that describes
Ci , such that:

∀a ∈ Ci : K |= Di (a)
∀b ∈ Cj , j ̸= i : K |= ¬Di (b).

Hence ∀Di ,Dj , i ̸= j : K |= Dj ⊑ ¬Di .
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Symbol-based methods for Ontology Mining Learning Disjointness Axioms

Learning Disjointness Axioms: Developed Methods

Statistical-based approach

NAR - exploiting negative association rules [Fleischhacker and Völker, 2011]

PCC - exploiting Pearson’s correlation coeff. [Völker et al., 2015]

do not exploit any background knowledge and reasoning capabilities
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Symbol-based methods for Ontology Mining Learning Disjointness Axioms

Terminological Cluster Tree

Defined a method [Rizzo et al., 2021] for eliciting disjointness axioms4

solving a clustering problem via learning Terminological Cluster Trees

providing a concept description for each cluster

Definition (Terminological cluster tree (TCT))

A binary logical tree where

a leaf node stands for a cluster of individuals C

each inner node contains a description D (over the signature of K)
each departing edge corresponds to positive (left) and negative (right)
examples of D

4
Implemented system publicly available at https://github.com/Giuseppe-Rizzo/TCTnew
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Symbol-based methods for Ontology Mining Learning Disjointness Axioms

Example of TCT

Given I ⊆ Ind(A)(A), an example of TCT describing the AI research
community

Person

Person ⊓ ∃hasPublication.⊤

Person ⊓ ∃hasPublication.AIPaper

C1 C2

C3

¬Person ⊓ Proceedings

C4 C5
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Symbol-based methods for Ontology Mining Learning Disjointness Axioms

Collecting Disjointness Axioms

Given a TCT T:
Step I:

Traverse the T to collect the concept descriptions describing the
clusters at the leaves

A set of concepts CS is obtained

Step II:

A set of candidate axioms A is generated from CS:
an axiom D ⊑ ¬E (D,E ∈ CS) is generated if

D ̸≡ E (or D ̸⊑ E or viceversa - reasoner needed)
E ⊑ ¬D has not been generated
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Symbol-based methods for Ontology Mining Learning Disjointness Axioms

Collecting Disjointness Axioms: Example

Person

Person ⊓ ∃hasPublication.⊤

Person ⊓ ∃hasPublication.AIPaper

C1 C2

C3

¬Person ⊓ Proceedings

C4 C5

CS = { Person,
Person ⊓ ∃hasPublication.⊤,
¬(Person ⊓ ∃hasPublication.⊤)
Person ⊓ ∃hasPublication.AIPaper
¬Person ⊓ Proceedings · · · }

Axiom1: Person ⊓ ∃hasPublication.AIPaper ⊑ ¬(¬Person ⊓ Proceedings)
Axiom2: · · · serve stringa quanto quella sopra per allineare assio
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Symbol-based methods for Ontology Mining Learning Disjointness Axioms

Inducing a TCT

Given the set of individuals I and ⊤ concept

Divide-and-conquere approach adopted

Base Case: test the stopCondition
the cohesion of the cluster I exceeds a threshold ν

distance between medoids below a threshold ν

Recursive Step (stopCondition does not hold):

a set S of refinements of the current (parent) description C generated
the bestConcept E∗ ∈ S is selected and installed as current node

the one showing the best cluster separation ⇔ with max distance
between the medoids of its positive P and negative N individuals

I is split in:

Ileft ⊆ I ↔ individuals with the smallest distance wrt the medoid of P
Iright ⊆ I ↔ individuals with the smallest distance wrt the medoid of N
reasoner employed for collecting P and N

Note: Number of clusters not required - obtained from data distribution
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Symbol-based methods for Ontology Mining Learning Disjointness Axioms

Lesson Learnt from experiments I

Experiments performed on ontologies publicly available

Goal I: Re-discover a target axiom (existing in K)
Setting:

A copy of each ontology is created removing a target axiom
Threshold ν = 0.9, 0.8, 0.7
Metrics # discovered axioms and #cases of inconsistency

Results:

target axioms rediscovered for almost all cases
additional disjointness axioms discovered in a significant number
limited number of inconsistencies found

Ontology
TCT 0.9 TCT 0.8 TCT 0.7

#inc. #ax’s #inc. #ax’s #inc. #ax’s
BioPax 2 53 2 53 3 52
NTN 10 70 9 73 10 75

Financial 0 125 0 126 0 127
GeoSkills 2 345 1 347 4 347
Monetary 0 432 0 432 0 433
DBPedia3.9 45 45 44 44 43 43
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Symbol-based methods for Ontology Mining Learning Disjointness Axioms

Lesson Learnt from experiments II

Goal II:

Re-discover randomly selected target axioms added according to the
Strong Disjointness Assumption [Schlobach, 2005]

two sibling concepts in a subsumption hierarchy considered as disjoint

comparative analysis with statistical-based methods [Völker et al., 2015;

Fleischhacker and Völker, 2011]

PCC - based on Pearson’s correlation coefficient
NAR - exploiting negative association rules

Setting:
A copy of each ontology created removing 20%, 50%, 70% of the
disjointness axioms

The copy used to induce TCT - ν = 0.9, 0.8, 0.7 - # Run: 10 times

Metrics: rate of rediscovered target axioms, #cases of inconsistency,
# addional discovered axioms
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Symbol-based methods for Ontology Mining Learning Disjointness Axioms

Lesson Learnt from experiments III

Results:
almost all axioms rediscovered

Rate decreases when larger fractions of axioms removed, as expected

TCT outperforms PCC and NAR wrt additionally discovered axioms
whilst introducing limited inconsistency

TCT allows to express complex disjointness axioms

PCC and NAR tackle only disjointness between concept names

Exploiting the K as well as the data distribution improves
disjointness axioms discovery
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Symbol-based methods for Ontology Mining Learning Disjointness Axioms

Example of axioms

Successfully discovered axioms

ExternalReferenceUtilityClass ⊓ ∃TAXONREF.⊤
disjoint with
xref

Activity
disjoint with
Person ⊓ ∃nationality.United states

Person ⊓ hasSex.Male (≡ Man)
disjoint with
SupernaturalBeing ⊓ God (≡ God)

Not discovered axioms

Actor disjoint with Artefact

(concepts with few instances)
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Numeric-based methods for Knowledge Graph Refinement

KG Embedding Models...

Vector embedding models largely investigated [Cai et al., 2018]

convert data graph into an optimal low-dimensional space

Graph structural information preserved as much as possible

CWA (or LCWA) mostly adopted vs. OWA

schema level information and reasoning capabilities almost disregarded

5

5
Picture from https://laptrinhx.com/node2vec-graph-embedding-method-2620064815/
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Numeric-based methods for Knowledge Graph Refinement

...KG Embedding Models...

Graph embedding methods differ in their main building blocks: [Ji

et al., 2021]

the representation space: point-wise, complex, discrete, Gaussian,
manifold, etc.

the encoding model: linear, factorization, neural models, etc.

the scoring function: based on distance, energy, semantic matching, other
criteria, etc.
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Numeric-based methods for Knowledge Graph Refinement

...KG Embedding Models

Goal

Learning embeddings s.t.

score of a valid (positive) triple
is higher than

the score of an invalid
(negative) triple 6

6
Picture from ”ECAI-20 Tutorial: Knowledge Graph Embeddings: From Theory to Practice”
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Numeric-based methods for Knowledge Graph Refinement

Idea: Enhance KGE through Background Knowledge Injection

By two components:

Reasoning: used for generating negative
triples

Axioms: domain, range, disjointWith,
functionalProperty;

BK Injection: defines constraints on
functions, corresponding to
the considered axioms,
guiding the way embedding
are learned

Axioms: equivClass, equivProperty,
inverseOf and subClassOf.
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Numeric-based methods for Knowledge Graph Refinement

Other KG Embedding Methods Leveraging BK

Jointly embedding KGs and logical rules [Guo et al., 2016]

triples represented as atomic formulae
rules represented as complex formulae modeled by t-norm fuzzy logics

Adversarial training exploiting Datalog clauses encoding assumptions
to regularize neural link predictors [Minervini et al., 2017a]

A specific form of BK required, not directly applicable to KGs

C. d’Amato (UniBa) SW with ML: issues to be considered Reasoning Web 2021 91 / 112



Numeric-based methods for Knowledge Graph Refinement

An approach to learn embeddings exploiting BK
[d’Amato et al., 2021]

Could be applied to more complex KG embedding methods
with additional formalization
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Numeric-based methods for Knowledge Graph Refinement TransOWL

TransOWL...

TransOWL maintains TransE setting

TransE [Bordes et al., 2013] learns the vector embedding by minimizing

Margin-based loss function

L =
∑

⟨s,p,o⟩∈∆

⟨s′,p,o′⟩∈∆′

[γ + fp(es , eo)− fp(es′ , eo′)]+

where [x]+ = max{0, x}, and γ ≥ 0

Score function
similarity (negative L1 or L2 distance) of the translated
subject embedding (es + ep) to the object embedding eo :

fp(es , eo) = −∥(es + ep)− eo∥{1,2}.
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Numeric-based methods for Knowledge Graph Refinement TransOWL

...TransOWL

Derive further triples to be considered for training via schema axioms

equivClass, equivProperty, inverseOf and subClassOf

More complex loss function

adding a number of terms consistently with the constraints

L =

TransE loss function∑
⟨h,r,t⟩∈∆

⟨h′,r,t′⟩∈∆′

[γ + fr (h, t)− fr (h
′, t′)]+ +

∑
⟨t,q,h⟩∈∆inverseOf

⟨t′,q,h′⟩∈∆′
inverseOf

[γ + fq(t, h)− fq(t
′, h′)]+

+
∑

⟨h,s,t⟩∈∆equivProperty

⟨h′,s,t′⟩∈∆′
equivProperty

[γ + fs(h, t)− fs(h
′, t′)]+ +

∑
⟨h,typeOf,l⟩∈∆∪∈∆equivClass

⟨h′,typeOf,l′⟩∈∆′∪∆′
equivClass

[γ + ftypeOf(h, l)− ftypeOf(h
′, l ′)]+

+
∑

⟨h,subClassOf,p⟩∈∆subClass
⟨h′,subClassOf,p′⟩∈∆′

subClass

[(γ − β) + f (h, p)− f (h′, p′)]+

where q ≡ r−, s ≡ r (properties), l ≡ t and t ⊑ p (classes) and f (h, p) = ∥eh − ep∥
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Numeric-based methods for Knowledge Graph Refinement TransROWL

TransROWL...

TransROWL

adopts the same approach of TransOWL

is derived from TransR [Lin et al., 2015]

TransE ⇒ poor modeling reflexive and non 1-to-1 relations (e.g. typeOf)

TransR ⇒ more suitable to handle such specificity

TransR adopts TransE loss function

Score function
preliminarily projects es and eo to the different
d-dimensional space of the relational embeddings ep through
a suitable matrix M ∈ Rk×d :

f ′p(es , eo) = −∥(Mes + ep)−Meo∥{1,2}.

where e′s = Mes and e′o = Meo
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Numeric-based methods for Knowledge Graph Refinement TransROWL

...TransROWL

TransOWL loss function adopted plus weighting parameters
equivClass, equivProperty, inverseOf and subClassOf

TransR score function adopted

L =
∑

⟨h,r,t⟩∈∆

⟨h′,r,t′⟩∈∆′

[γ + f ′r (h, t)− f ′r (h
′, t′)]+ + λ1

∑
⟨t,q,h⟩∈∆inverseOf

⟨t′,q,h′⟩∈∆inverseOf′

[γ + f ′q (t, h)− f ′q (t
′, h′)]+

+λ2

∑
⟨h,s,t⟩∈∆equivProperty

⟨h′,s,t′⟩∈∆equivProperty′

[γ + f ′s (h, t)− f ′s (h
′, t′)]+ + λ3

∑
⟨h,typeOf,l⟩∈∆∪∆equivClass

⟨h′,typeOf,l′⟩∈∆′∪∆′
equivClass

[γ + f ′typeOf(h, l)− f ′typeOf(h
′, l ′)]+

+λ4

∑
⟨t,subClassOf,p⟩∈∆subClass

⟨t′,subClassOf,p′⟩∈∆subClass′

[(γ − β) + f ′(t, p)− f ′(t′, p′)]+

where

q ≡ r−, s ≡ r (properties), l ≡ t and t ⊑ p (classes)

the parameters λi , i ∈ {1, . . . , 4}, weigh the influence that each
function term has during the learning phase
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Numeric-based methods for Knowledge Graph Refinement TransROWLR

TransROWLR ...

TransROWLR adopts axiom-based regularization of the loss function,
as for TransER [Minervini et al., 2017b]

by adding specific constraints to the loss function rather than

explicitly derive additional triples during training

TransER adopt TransE score and loss function
adds to the loss function axiom-based regularizers for inverse and
equivalent property constraints

Loss function

L =
∑

⟨h,r,t⟩∈∆

(h′,r′,t′)∈∆′

[γ + fr (h, t)− fr (h
′, t′)]+ + λ

∑
r≡q−∈TinverseOf

∥r + q∥+ λ
∑

r≡p∈TequivProp

∥r − p∥

where TinverseOf TequivProp set of inverse properties and equivalent properties
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Numeric-based methods for Knowledge Graph Refinement TransROWLR

...TransROWLR

TransR score function adopted
additional regularizers needed for equivalentClass and
subClassOf axioms
further constraints on the projection matrices associated to relations

Loss function

L =
∑

⟨h,r,t⟩∈∆

⟨h′,r′,t′⟩∈∆′

[γ + f ′r (h, t)− f ′r (h
′, t′)]+

+λ1

∑
r≡q−∈TinverseOf

∥r + q∥ + λ2

∑
r≡q−∈TinverseOf

∥Mr −Mq∥

+λ3

∑
r≡p∈TequivProp

∥r − p∥ + λ4

∑
r≡p∈TequivProp

∥Mr −Mp∥

+λ5

∑
e′≡e′′∈TequivClass

∥e′ − e′′∥ + λ6

∑
s′⊆s′′∈TsubClass

∥1− β − (s ′ − s ′′)∥

Additional term for projection matrices required for inverseOf and equivProp

triples to favor the equality of their projection matrices
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Numeric-based methods for Knowledge Graph Refinement Lesson Learnt from Experiments

Lesson Learnt from Experiments...

Goal: Assessing the benefit of exploiting BK

Comparing7 TransOWL, TransROWL, TransROWLR over to
the original models TransE and TransR as a baseline

Perfomances tested on:

Link Prediction task

Triple Classification task

Standard metrics adopted

KGs adopted:
KG #Triples #Entities #Relationships

DBpedia15K 180000 12800 278
DBpedia100K 600000 100000 321
DBpediaYAGO 290000 88000 316

NELL8 150000 68000 272

7
All methods implemented as publicly available systems https://github.com/Keehl-Mihael/TransROWL-HRS

8
equivalentClass and equivalentProperty missing; limited number of typeOf-triples; abundance of subClassOf-triples
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Numeric-based methods for Knowledge Graph Refinement Lesson Learnt from Experiments

...Lesson Learnt from Experiments

Best performance achieved by TransROWL, in most of the cases,
and TransROWLR

TransROWL slightly superior performance of TransROWLR

As for NELL, the models showed oscillating performances wrt the
baselines

NELL was aimed at testing in condition of larger incompleteness

equivalentClass and equivalentProperty missing
low number of typeOf-triples per entity
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Conclusions

Conclusions

Machine Learning methods

could be usefully exploited for ontology mining and KG refinement

suitable also in case of incoherent/noisy KBs

can be seen as an additional layer on top of deductive reasoning
for new/additional forms of approximated reasoning capabilities

Adopting ML solutions could be simple in principle

often instantiating an existing learning schema is just needed

Alert

understand the meaning of each component for instantiating a learning
schema correctly
it could be the case that some components require newly developed
solutions

e.g. new similarity measure for expressive representations, suitable
refinement operators, injecting BK

C. d’Amato (UniBa) SW with ML: issues to be considered Reasoning Web 2021 102 / 112



That’s all!

Questions ?

Claudia d’Amato
Computer Science Department
University of Bari, Bari - Italy
email:
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